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❖ Infrastructure for access acceleration and DDoS defence
➢ 14.85% of top 1M, 38.98% of top 10K websites [Your Remnant Tells Secret, DSN ’18]

➢ We find CDN itself can be abuse to break its DDoS protection

Content Delivery Network
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OriginCDN



CDN Forwarding Process
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Ingress Egress

CDN

Origin

GET /index.php 
Host: demo.com

end-to-end connection frontend and backend connections

frontend backend



Previous Works
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Our work: abuse CDN-forwarded requests to attack the origin.

CDN Internal security
[Forwarding loop attack, NDSS ’16]Front-end connection security

[HTTPS meet CDN, IEEE S&P ’14]
[TLS private key sharing, CCS ’16]
[Host of trouble, CCS ’16]
[Cache fallen, CCS ’19]
[End user maneuvered, USENIX security ’18]
[Cached and Confused, USENIX security ’20]

Backend connection security
[Protection or Threat, ESORICS ’09]

Origin IP Expose
[CloudPiercer, CCS ’15]
[Residual Resolution, DSN ’18]



Our Work
❖ Exploiting request-forwarding flaws

❖ Performed realworld evaluations on six vendors
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Attack-1 HTTP/2 bandwidth amplification attack

Attack-2 Pre-POST slow HTTP attack

Attack-3 Egress IP blocking attack



Request-forwarding Features Could be Abused
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CDN

Forwarded Request

Client

Request

Origin

Attack-1 Protocol converting: HTTP/2 -> HTTP/1.1 Maximum compatibility

Pre-POST forwarding: speed up request-forwarding Access Acceleration

Origin shield: reduce backend connections Traffic offloadingAttack-3

Attack-2



Attack-1

HTTP/2 Bandwidth Amplification Attack



HTTP/2 Protocol
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❖ RFC7540, released in 2015
➢ Binary message framing
➢ Streams and multiplexing

Multiple HTTP requests and responses can be transferred in the same TCP 
connection in parallel and staggered.

➢ HPACK: header compression
Avoid repeatedly transferring headers that do not change frequently.

❏ Deployment: Over 43.2% of Alexa top 1M websites (w3techs.com, 12 Feb 2020)



HTTP/2-1.1 Amplification on CDN
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OriginAttacker

Protocol conversion

CDN

HTTP/1.1HTTP/2 one http request

❖ Our study
➢ Identify that HTTP/2-1.1 conversion of CDN will cause amplification attack.
➢ Improve the attack with the feature of Huffman encoding.
➢ Real-world measurement and evaluation.

❏ [HTTP/2 Tsunami Attack, EST ’17] 
Show an amplification attack in HTTP/2-1.1 proxies built with Nginx and Nghttp2.



CDN Vendors Claim to Support HTTP/2
❖ HTTP/2 is supported by most major CDNs
❖ The backend connection still uses HTTP/1.1
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CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Frontend 
Connection

Default on
Configurable Default on Default on Default off

Configurable Default on Default on
Configurable

Backend 
Connection Still use HTTP/1.1



❖ Referencing an indexed static table of common header fields to 
encode request headers.

Attack-1.1: Using HPACK Static Table
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1 :authority
2 :method GET
3 :method POST
4 :path /
... ... ...
7 :scheme https
... ... ...
61 www-authenticate

2
4
1
7

H(“demo.com”)

Static Table
Raw Request Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https

82 84 41 86 90 b4 9d 72 
1e 9f 87

54 Bytes

11 Bytes



Attack-1.1: Using HPACK Static Table
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Attacker Origin

82 84 41 86 90 b4 9d 72 
1e 9f 87

GET / HTTP/1.1
host: demo.com
scheme: https

CDN

Bandwidth amplification factor: 49B / 11B = 4.45

HTTP/2 HTTP/1.1 

❖ HTTP/2-1.1 conversion of CDN causes a bandwidth amplification.

11 Bytes 49 Bytes



Attack-1.2: Using HPACK Dynamic Table
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❖ Use an indexed dynamic table of previously seen headers to avoid 
repeatedly transferring headers in the table.
➢ The firstly seen headers will be inserted into the dynamic table.

Request 1 Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000B)
cookie2: X..X(1968B)

2
4
1
7

Static Table

Dynamic Table

H(“X...X”)

H(“demo.com”)

H(“cookie1”)

H(“X...X”)H(“cookie2”)

82 84 ... fc (3999B)
... ... ...
61 www-authenticate

4042 Bytes

3999 Bytes



Attack-1.2: Using HPACK Dynamic Table
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❖ Use an indexed dynamic table of previously seen headers to avoid 
repeatedly transferring headers in the table.
➢ The subsequently repeated headers will be substituted as an index.

Request 2 Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000B)
cookie2: X..X(1968B)

... ... ...
61 www-authenticate
62 :authority demo.com
63 cookie1 X...X (2000B)
64 cookie2 X...X (1968B)

2
4
62
7
63

Static Table

Dynamic Table

82 84 c0 87 bf be

4042 Bytes

6 Bytes



Attack-1.2: Using HPACK Dynamic Table
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Attacker Origin

82 84 ... fc (3999B) GET / HTTP/1.1
host: demo.com
scheme: https
cookie1: X...X (2000B)
cookie2: X...X (1968B)

CDN

Bandwidth amplification factor: 4039B × (N+1)  / 3999B + 6B × N = 

82 84 c0 87 bf be × N

× (N+1)

4039 + 4039N
3999 + 6N

For example, when N is 100, the factor is 88.70.

HTTP/2 HTTP/1.1 

❖ The dynamic table enhances this kind of bandwidth amplification.

6 Bytes

3999 Bytes 4039 Bytes
× 1



Attack-1.3: Improve with Huffman Encoding

16

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000B)
cookie2: X..X(1968B)

82 84 ... fc (3999B)

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: a..a(2000B)
cookie2: a..a(1968B)

82 84 ... 63 (2511B)

❖ The shorter the Huffman encoding, the shorter the encoded data.
➢ The Huffman encoding of ‘X’ is 8 bits in length.
➢ Characters {0, 1, 2, a, c, e, i, o, s, t} have the shortest Huffman encoding (5 bits).

Request 1

Encoded Data



Attack-1.3: Improve with Huffman Encoding
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❖ The shorter the Huffman encoding, the larger the amplification factor.

Huffman Encoding 
Length Amplification Factor

Character ‘X’ 8 bits 88.70 
when N is 100

Character ‘a’ 5 bits 131.13 
when N is 100

Note: N is the concurrent requests in the same HTTP/2 connection.

4039 + 4039N
3999 + 6N

4039 + 4039N
2511 + 6N



Amplification Evaluation
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❖ Create multiple concurrent requests in one HTTP/2 connection.
➢ The amplification factor grows with the number of concurrent requests.
➢ The max factor is got at the position of the max concurrent streams.

Max concurrent stream



Further improvement
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Max Streams 100 128 256

Our Attack

Evaluation 
Platform MaxCDN Fastly CDNsun CloudFront KeyCDN Cloudflare

Amplification 
Factor 94.7 97.9 118.7 116.9 105.5 166.1

HTTP/2 Tsunami 
Attack

Evaluation 
Platform HTTP/2 Proxies built with Nginx and Nghttp2

Amplification 
Factor 79.2 94.4 140.6

❖ Our work achieved larger amplification factors than previous work.



Attack-2

Pre-POST Slow HTTP Attack



CDN POST-Forwarding strategy
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❖ Two POST-forwarding strategies
➢ Full-Forwarding: receive both header and the full message body, then forward
➢ Pre-Forwarding: receive the header, then forward 

CDNClient Origin
frontend backend

← Full-Forwarding

← Pre-Forwarding

request header
message body



❖ Pre-Forwarding strategy can be abused to perform DDoS attack
➢ Frontend connections: send POST messages slowly.
➢ Backend connections: maintain for a long time.
➢ However, the attacker has to consume TCP connections as much as the origin.

HTTP/1.1 Pre-POST Forwarding Attack
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Attacker OriginCDN

Send POST msg slowly 

HTTP/1.1 HTTP/1.1

Connection resources exhausted



HTTP/2 Enhances the Attack 
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OriginAttacker CDN

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Max concurrent streams 
per HTTP/2 connection 128 256 128 100 128 100

❖ CDN converts concurrent streams in one HTTP/2 connection to 
multiple HTTP/1.1 connections when forwarding.
➢ The attacker consumes TCP connections much less than the origin.

HTTP/2

HTTP/1.1



Pre-POST Forwarding Attack

24

OriginAttacker CDN

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Max concurrent streams 
per HTTP/2 connection 128 256 128 100 128 100

❖ Pre-Forwarding strategy can be abused to perform DDoS attack
❖ concurrent streams in one HTTP/2 connection →  multiple HTTP/1.1 connections

HTTP/2

HTTP/1.1

Send POST msg slowly Connection resources exhausted



Real-world POST-forwarding Behaviors
❖ Some CDNs adopts Pre-Forwarding strategy to process POST request.

➢ Step 1: send POST message slowly in 300 seconds.
➢ Step 2: observe how long the backend connection maintains.
➢ Conclusion: The attacker can control the survival time of backend connections.
➢ Similar results were obtained using HTTP/1.1 or HTTP/2.
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CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Request Receiving 
Time in Origin 0.87s 300.29s 299.92s 0.55s 299.79s 0.74s

Connection Keep-alive 
Time in Origin 298.89s 0.12s 0.34s 299.32s 0.37s 15.01s

Vulnerable - - Vulnerable - Vulnerable



Proof of Concept
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❖ Origin: max connections = 1000
❖ Attacker: send msg slowly for 300s
❖ Norml User: access website every 5s
❖ Result - the Origin is deny of service

➢ CloudFront, HTTP 504 gateway timeout
➢ Fastly, HTTP 503 service unavailable
➢ MaxCDN, A QoS attack

504

503



Attack-3

Egress IP Blocking Attack



Origin Shield
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Without Origin Shield With Origin Shield
- offload the origin
- speed up cache-miss responses

❏ https://docs.fastly.com/en/guides/shielding

backend connections 
originated from less 
egress IPs.



Threat Model
❖ Global clients will be affected when just blocking one (or a small 

set) egress IP(s) ?

29

Origin
Global Clients Ingress Egress

CDN

access blocking



Measurement of CDN Egress IP
❖ Simulate global clients
➢ hourly send requests to all ingress IP addresses

❖ Monitor egress IP churning at our own origin

30
Simulate accessing 
from global clients.



❖ A small set of egress IPs

❖ Churning of egress IPs (24 hours measurement)
➢ MaxCDN: 96.32% of the backend connections originated from the same egress IP.
➢ Other CDNs churn egress IPs more fast, < 10% of the backend connections originated 

form the same egress IP.

Characteristics of Egress IP distribution
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Mapping Ingress IPs Egress IPs

CloudFront DNS 128906 862

Cloudflare Anycasting 490309 242

Fastly DNS 64659 1136

MaxCDN Anycasting 300 12

CDNSun DNS 116 40

KeyCDN DNS 95 39

❏ Results are consistent with [Unveil the hidden presence, ICNP ’19]



4.Collateral blocking

MaXCDN

Real-world Case Study

32

Global ingress IPs

Origin

End-users

1 egress IP

1. GET /BannedWord

3.GET /index.php

GFW

CDN 
- Churning of egress IP is slow

Backend connection
- GFW locates between CDN and origin
- GFW blocks censored IP pairs for 90s

Collateral blocking
- Attacker sends requests to ingress IPs
- Global end-users are collaterally blocked

2.90s IP blocking



Egress IP Blocking Evaluation
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❖ MaxCDN: block one egress IP for 12 hours

Successful accessing ratio drops below 90%,
only < 10% global clients are not affected. 

Slow egress IP churning makes the 
backend attack much easier !

3 origin locations: egress IP churning is not a 
function of origin location



Summary



Mitigation
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Threat Recommendation

Attack-1 limit the backend network traffic.

Attack-2 enforce strict forwarding (store-then-forward).

Attack-3 apply unpredictable egress IP churning strategy.



Responsible Disclosure

❖ Fastly： Confirmed HTT/2 and pre-POST threats, suggest to implement a request  
forwarding timeout, and offered us T-shirts.

❖ Cloudflare: reproduced HTTP/2 amplification with 126x, and rewarded us $200 
bonus.

❖ CloudFront: HTTP/2 issue is the product of HTTP/2 standard, suggest to use 
rate-based WAF rules to mitigate the attack.

❖ MaxCDN: HTTP/2 is already known.They think the egress IP blocking is out of 
scope as it involves with additional GFW infrastructure. 

❖ CDNSun and KeyCDN: thanked for the messages and forwarded the issues to the 
developers, although no further response.

36



Summary
❖ CDN faces more security challenges in the increasing 

complicated Internet.
❖ Protocol or implementation weaknesses of CDN can be 

abused to break DDoS protection. 
❖ Finding the balance between usability and security.

37



Thank you!

38



Egress IP Blocking Evaluation
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❖ Block backend connection(s) for 12 hours
➢ MaxCDN: block one egress IP 
➢ Other CDNs:  block 16 egress IPs

MaxCDN: Only < 10% global clients are not 
affected. (Origin located in 
Beijing/Singapore/Silicon Valley)

> 80% global clients are not affected

< 60% global clients are not affected

Slow egress IP churning makes the 
backend attack much easier !



结论 里说，Goals of CDN Vendors
❖ Under fierce business competition

❖ Strive to provide efficient & full-featured service

40

Negligence / sacrifice of security?



Experimental Blocking Evaluation
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Experimental blocking
➔ From hour 0, send requests to global 

ingress IPs, simulating a global accessing
➔ From hour 1, block one egress IP of 

MaxCDN, block 16 egress IPs of other 
CDNs

➔ Successful global accessing ratio drops
➢ MaxCDN, blew 10% within 12 hours
➢ Other CDNs fluctuate because of 

faster egress IP churning rate

A low egress IP churning rate make the backend attacks more easier
➢ access blocking, e.g., on-path blocking or off-path “CrossFire” attack
➢ traffic eavesdropping
➢ ...



Q1: 
How to globally measure the hidden DNS 
interception?

Q2: 
What are the characteristics of the hidden 
DNS interception? 



Collect vantage points

Diversify DNS requests

Identify egress IP



Amplification factors
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❖ To achieve the maximum amplification factors
➢ Streams

■
➢ HPACK

■
■

➢ Huffman encoding
■



HTTP/2 amplification factors
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❖ The amplification factors are affected by the Huffman 
encoding and the :path header field.

❖ To achieve the maximum amplification factors:
➢ Use characters in { 0, 1, 2, a, c, e, i, o, s, t } which have the shortest 

Huffman encoding  defined in the RFC7541.
➢ Use a “:path” header field predefined in the static table, or a shorter 

one. 
Applicable to all vendors we tested.



Experimental evaluation
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Backend blocking:
blocking  or  IPs for  hoursCDNs aim to access  
and cache web 
resources efficiently 
with few nodes

Fewer egress IP 
resources 

A much lower egress 
IP-churning rate

Degrade global availability

➔

➔

➔
➢
➢



HTTP/2 Protocol
❖ RFC7540, released in 2015
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A. Binary framing message 

B.  Multiplexing streams

C. HPACK header compression

plain text
inconsistent interpretation

header-of-line blocking
Concurrent multiplex streams

repeated redundant header 
fields in each request and reply

HTTP1.1



❖ A normal request is routed to a nearby CDN ingress IP.
❖ CDN connects the server with a egress IP

Ingress IP & Egress IP
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❖ Global nodes can be accessed directly from one vantage 
point

DoS to DDoS

49



Global distribution of Ingress IP
❖ Collect ingress IP addresses
➢ Internet-wide HTTP scanning ( or censys.io)
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http://censys.io


CDN Threat Model
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Bypass CDN protection
[CloudPiercer, CCS ’15]
[Residual Resolution, DSN ’18]

Front-end security
[HTTPS meet CDN, IEEE S&P ’14]
[TLS private key sharing, CCS ’16]

Cache Poison
[Host of trouble, CCS ’16]
[Cache fallen, CCS ’19]
[Cached and Confused, USENIX security ’20]

Attack Origin
[Protection or Threat, ESORICS ’09]
Attack CDN
[Forwarding loop attack, NDSS ’16]

Send legal crafted requests to abuse the CDN to attack the origin ?



CDN Forwarding Process
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Decoupled frontend and backend connections



Improve with Huffman Encoding
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Huffman(“ ”)

1000 0010
1000 0100
0100 0001 + 1xxx xxxx + 100100 00101 101001 00111 010111 00100 00111 101001 
                    --> 1000 0110 + 1001 0000 1011 0100 1001 1101 0111 0010 0001 1110 1001 1111
1000 0111

82 84 41 86 90 b4 9d 72 1e 9f 87



HPACK: Header Compression for HTTP
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HTTP/2 HPACK static table
半页表原理，半页举例压缩效果

Huffman(“ ”)

Request header

Static table

Dynamic table

HPACK-encoded header



Amplification factors
❖ To achieve the maximum amplification factors

56

A. HPACK

Affecting features

B.  Multiplexing streams

C. Huffman encoding

Use the repeated head fields with 
large-sized values, “cookies”, 
“user-agent”

Use maximum streams 

Use characters which have the 
shortest Huffman encoding



HTTP/   Amplification Attack

57

GET  /
:authority:demo.com
Cookie: a=abc...xyz

GET /url1
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

GET /url2
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc



HTTP/   Amplification Attack
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GET  /
:authority:demo.com
Cookie: a=abc...xyz

2
4
62
63

GET /url1
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

GET /url2
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc



❖ HTTP/1.1 performance inefficiency
➢ Head-of-line blocking 

❖ A TCP connection can send multiple HTTP requests and 
responses in parallel and staggered

Stream1 Stream3 Stream1Stream3

Stream4 Stream2

Multiplexing Streams
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Attack-1.2: Using HPACK Dynamic Table

60

Request 1 Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000)
cookie2: X..X(1968)

82 84 ... fc (3999)
... ... ...

61 www-authenticate

2

4

1

7

Static Table

Dynamic Table Huffman(“X...X”)

Request 2 Encoded Data

... ... ...

61 www-authenticate

62 :authority demo.com

63 cookie1 X...X (2000)

64 cookie2 X...X (1968)

2

4

62

7

63

Static Table

Dynamic Table

Huffman(“demo.com”)

82 84 c0 87 bf be
:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000)
cookie2: X..X(1968)

Huffman(“cookie1”)

Huffman(“X...X”)Huffman(“cookie2”)



Impact From “:path” Header Field 
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:path: /
:authority:demo.com
other_field: ...

:path: /other_urls
:authority:demo.com
other_field: ...

indexed as “4” in HTTP/2 table



HTTP is designed to keep connection open until the receiving of data is finished.

Slow HTTP Attack
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Exhaust the HTTP connection resources



❖ A CDN stops
➢ slow header attack (receive the full header then forward)
➢ slow read attack (no slow attribute in backend connection)
➢ slow POST attack ? 

CDN mitigates slow HTTP attacks

63



slow post 攻击图

Pre-POST Forwarding Attack
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HTTP/2-1.1 Amplification on CDN
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OriginAttacker

Protocol conversion

CDN

HTTP/1.1HTTP/2 one http request

❖ Our study
➢ Identify that HTTP/2-1.1 conversion of CDN will cause amplification attack.
➢ Improve the attack with the feature of Huffman encoding.
➢ Real-world measurement and evaluation.

one TCP connection


