CDN Judo : Breaking the CDN DoS
Protection with Itself

Run Guo, Weizhong Li, Baojun Liu, Shuang Hao,
Jia Zhang, Haixin Duan, Kaiwen Shen, Jianjun Chen, Ying Liu

< RN A
{f 3 b (\1 i
{)
\L A A)
Y v/ L
<7 ! '\,;-
I)
\ /

o % i
<1/ A<
{f X o
® ¢l

W A

Content Delivery Network

« Infrastructure for access acceleration and DDoS defence

> 14.85% of top 1M, 38.98% of top 10K websites [Your Remnant Tells Secret, DSN *18]
> We find CDN 1itself can be abuse to break its DDoS protection

T~
-1

Origin

- ——

00O

\AJ

\l

CDN Forwarding Process

end-to-end connection

GET /index.php
\— Host: demo.com

A

0 | frontend

Client

frontend and backend connections

Ingress

‘) 1 ¥
Fgress backend

Origin

Previous Works

/Front-end connection security \

[HTTPS meet CDN, IEEE S&P *14]

[TLS private key sharing, CCS ’16]

[Host of trouble, CCS *16]

[Cache fallen, CCS ’19]

[End user maneuvered, USENIX security *18]

QCached and Confused, USENIX security ’20] /

& —_

i\

(CDN Internal security

HID =-

L[Forwarding loop attack, NDSS ’16]

p
Backend connection security

\[Protection or Threat, ESORICS *09]

Origin IP Expose
[CloudPiercer, CCS ’15]
[Residual Resolution, DSN 18]

—
A ,:‘—

[Our work: abuse CDN-forwarded requests to attack the origin. }

4

Our Work

+ Exploiting request-forwarding flaws

g albes HTTP/2 bandwidth amplification attack
g Pre-POST slow HTTP attack
Aieigeriis Egress [P blocking attack

« Performed realworld evaluations on six vendors

0.0

g
"4’ amazon éa ~ICDNsun

T ervices CLOUDFLARE

fastly ~ Ofkeyedn

Request-forwarding Features Could be Abused

Attack-1 Protocol converting: HT'TP/2 -> HTTP/1.1 Maximum compatibility

Attack-2 Pre-POST forwarding: speed up request-forwarding Access Acceleration

Attack-3 Origin shield: reduce backend connections Traffic offloading

Request)@)‘ Forwarded Request .

e
el
Client CDN Origin

Attack-1
HTTP/2 Bandwidth Amplification Attack

HTTP/2 Protocol

+ RFC7540, released 1n 2015
> Binary message framing

> Streams and multiplexing

Multiple HTTP requests and responses can be transferred in the same TCP
connection in parallel and staggered.

> HPACK: header compression
Avoid repeatedly transferring headers that do not change frequently.

0 Deployment: Over 43.2% of Alexa top 1M websites (w3techs.com, 12 Feb 2020)

HTTP/2-1.1 Amplification on CDN

+ Our study
> lIdentity that HTTP/2-1.1 conversion of CDN will cause amplification attack.
> Improve the attack with the feature of Hutfman encoding.

> Real-world measurement and evaluation.

Protocol conversion
HTTP/2 - HTTP/1.1 I one http request

é L @ . . . 1 =
' . A B>
Attacker CDN Origin

[[HTTP/2 Tsunami Attack, EST *17]
Show an amplification attack in HTTP/2-1.1 proxies built with Nginx and Nghttp?2.

CDN Vendors Claim to Support HTTP/2

+ HTTP/2 1s supported by most major CDNs
+ The backend connection still uses HTTP/1.1

Frontend Default on Default on Default on Default off Default on Default on
Connection Configurable Configurable Configurable
Backend Still use HTTP/1.1
Connection

10

Attack-1.1: Using HPACK Static Table

+ Referencing an indexed static table of common header fields to
encode request headers.

Raw Request » Encoded Data
Static Table

:method: GET 82 84 41 86 90 b4 9d 72
:path: / 1 :authority le 9f 87
:authority: demo.com 2 :method GET 11 Bytes
:scheme: https 3 ‘method POST)

54 Bytes . pett / 4

1 H(*demo.com™)
7 :scheme https 7

61 www-authenticate

11

Attack-1.1: Using HPACK Static Table

+ HTTP/2-1.1 conversion of CDN causes a bandwidth amplification.

11 Bytes 49 Bytes
82 84 41 86 90 b4 9d 72 GET / HTTP/1.1
le 9f 87 host: demo.com Q
scheme: https
& = |
() =— =
HTTP/2 b HTTP/1.1 ,
Attacker CDN Origin

Bandwidth amplification factor: 49B / 11B = 4.45

12

Attack-1.2: Using HPACK Dynamic Table

+ Use an indexed dynamic table of previously seen headers to avoid
repeatedly transferring headers in the table.

> The firstly seen headers will be mserted into the dynamic table.

Request 1 » Encoded Data
Static Table
:method: GET 82 84 ... fc (3999B)
: : 2
path: / , 3999 Bytes

:authority: demo.com 61 www-authenticate 4

:scheme: https 5 .

cookiel: X..X(2000B) I H(*demo.com”)
cookie2: X..X(1968B) Dynamic Table 7

H(*cookiel™) H(*X...X™)
4042 Bytes

H(*cookie2”) H(“X...X™)
13

Attack-1.2: Using HPACK Dynamic Table

+ Use an indexed dynamic table of previously seen headers to avoid

repeatedly transferring headers in the table.

> The subsequently repeated headers will be substituted as an index.

Request 2

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: X..X(2000B)
cookie?2: X..X(1968B)

4042 Bytes

Static Table

61 www-authenticate

62
63
64

:authority demo.com
cookiel X...X'(2000B)
cookie?2 X...X (1968B)

Dynamic Table

» Encoded Data

82 84 cO0 87 bf be

6 Bytes

62

63

14

Attack-1.2: Using HPACK Dynamic Table

+ The dynamic table enhances this kind of bandwidth amplification.

3999 Bytes 4039 Bytes
82 84 ... fc (3999B) |x1 GET / HTTP/1.1
host: demo.com
scheme: https x (N+1)
6 Bytes cookiel: X...X (2000B)
82 84 c0 87 bf be x N cookieZ: X...X (1968B)
& ¢y 1.
‘ ‘ HTTP/2 7 HTTP/1.1
Attacker CDN Origin
: : : 4039 + 4039N
Bandwidth amplification factor: 4039B x (N+1) /3999B + 6B x N = 3999 T €N

For example, when N 1s 100, the factor 1s 88.70.
15

Attack-1.3: Improve with Huffman Encoding

+ The shorter the Huffman encoding, the shorter the encoded data.

> The Huffman encoding of ‘X’ is 8 bits 1n length.

> Characters {0, 1, 2, a, c, e, 1, 0, s, t} have the shortest Huffman encoding (5 bits).

Request1

Encoded Data

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: X..X(2000B)
cookie2: X..X(1968B)

¥

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: a..a(2000B)
cookie2: a..a(l1968B)

82 84 ... fc (3999B)

¥

82 84 ... 63 (2511B)

16

Attack-1.3: Improve with Huffman Encoding

+ The shorter the Huffman encoding, the larger the amplification factor.

- . 4039 + 4039N 88.70

Character ‘X 8 bits 3990 + 6N when N is 100
., . 4039 + 4039N 131.13

Character ‘a 5 bits 2511 7 6N when N is 100

Note: N is the concurrent requests in the same HTTP/2 connection.

17

Amplification Evaluation

+» Create multiple concurrent requests in one HTTP/2 connection.

> The amplification factor grows with the number of concurrent requests.

> The max factor 1s got at the position of the max concurrent streams.

—— Cloudflare
—— CloudFront
Lol —— MaxCDN
—— CDNSun
100 —— KeyCDN =
—— Fastly . M “ A
¥ oo JW ‘
80
//) M
L ki

5 A ‘. Nl
/ | Wfhaephin i
: Y ’

40 § Max concurrent stream

20 /\

50 100 150 200 250 300 350 400

Bandwidth Amplification Ratio

Number of Concurrent Streams 1 8

Further improvement

+ Our work achieved larger amplification factors than previous work.

Eglfgiiﬁn MaxCDN Fastly = CDNsun CloudFront KeyCDN Cloudflare
Our Attack . .
Aml;zi‘;i“"n 94.7 979 1187 116.9 105.5 166.1
HTTP/2 Tsunami E}:ﬂ;i;ﬁn HTTP/2 Proxies built with Nginx and Nghttp2
Attack
Amllojliit((:)artlon 799 04 .4 140.6

19

Attack-2
Pre-POST Slow HTTP Attack

CDN POST-Forwarding strategy

+ Two POST-forwarding strategies
> Full-Forwarding: receive both header and the full message body, then forward G

> Pre-Forwarding: receive the header, then forward x

. @ > | m request header
frontend ml backend ,: m message body
CDN Origin
m ------ R > 1IN « Full-Forwarding
m ------ R > il =====- IR > 1IN « Pre-Forwarding

21

HTTP/1.1 Pre-POST Forwarding Attack

+ Pre-Forwarding strategy can be abused to perform DDoS attack
> Frontend connections: send POST messages slowly.
> Backend connections: maintain for a long time.

> However, the attacker has to consume TCP connections as much as the origin.

Send POST msg slowly Connection resources exhausted
5 : > ﬁ >
= . (- :
r - : 1
- >
Afttacker HTTP/1.1 CDN HTTP/1.1 Ori gin

22

%*

HTTP/2 Enhances the Attack

CDN converts concurrent streams in one HTTP/2 connection to
multiple HTTP/1.1 connections when forwarding.

> The attacker consumes TCP connections much less than the origin.

(\ . —>

8= f 1
HTTP/2 o >

Attacker CDN HTTP/1.1 Origin

Max concurrent streams
per HTTP/2 connection

23

Pre-POST Forwarding Attack

< Pre-Forwarding strategy can be abused to perform DDoS attack

< concurrent streams in one HTTP/2 connection — multiple HTTP/1.1 connections

Send POST msg slowly Connection resources exhausted
®
8 =@
HTTP/2 T -
Attacker CDN HTTP/1.1 Origin

Max concurrent streams
per HTTP/2 connection

24

Real-world POST-forwarding Behaviors

+ Some CDNs adopts Pre-Forwarding strategy to process POST request.

> Step 1: send POST message slowly in 300 seconds.

> Step 2: observe how long the backend connection maintains.

> Conclusion: The attacker can control the survival time of backend connections.
> Similar results were obtained using HTTP/1.1 or HTTP/2.

Request Receiving

.] . . 0.87s 300.29s 299.92s 0.55s 299.79s 0.74s
Time in Origin
CUMEMIIILEIPEINE | gom e 0.12s 0.34s 299.32s 0.37s 15.01s
Time in Origin
Vulnerable - - Vulnerable - Vulnerable

25

X/
A X4 A X

X/
£ %4

7/
X

Proof of Concept

Origin: max connections = 1000
Attacker: send msg slowly for 300s
Norml User: access website every 5s

Result - the Origin 1s deny of service

> CloudFront, HTTP 504 gateway timeout
> Fastly, HTTP 503 service unavailable

> MaxCDN, A QoS attack

Responese Time (s)

------- CloudFront - Fastly ~——MaxCDN

100

.
. S504.......,

1 \
| \e
| \

200 300

Time (s)

400

500

600

26

Attack-3
Egress IP Blocking Attack

Origin Shield

Without Origin Shield

—e®—h

000 (;_5/

0 https://docs.fastly.com/en/quides/shielding

000
MG VA

0 OO

W ith Origin Shield
- offload the origin
- speed up cache-miss responses

000 ., @

—
00O @/

backend connections
originated from less
egress IPs.

28

Threat Model

» Global clients will be affected when just blocking one (or a small

set) egress IP(s) ?
[access blocking é
)
JoR — CDN
o I P ! N ,:
1o il . Origin
Global Clients Ingress EgreSS/

29

Measurement of CDN Egress IP

» Simulate global clients
> hourly send requests to all ingress IP addresses

+ Monitor egress IP churning at our own origin
NECEENCR

M + (DN - \1
w O 9 o

Origin

Ingress Egrey

Simulate accessing
from global clients.

Characteristics of Egress IP distribution

» A small set of egress IPs

_ Mapplng Ingress IPs Egress IPs

CloudFront 128906

Cloudflare Anycasting 490309 242
Fastly DNS 64659 1136
MaxCDN Anycasting 300 12
CDNSun DNS 116 40
KeyCDN DNS 95 39

% Churning of egress IPs (24 hours measurement)

> MaxCDN: 96.32% of the backend connections originated from the same egress IP. x

> Other CDNs churn egress IPs more fast, < 10% of the backend connections originated

form the same egress IP. 0

O Results are consistent with [Unveil the hidden presence, ICNP °19]

31

Real-world Case Study

CDN

- Churning of egress IP is slow

Backend connection
- GFW locates between CDN and origin
- GFW blocks censored IP pairs for 90s

Global ingress IPs

MaXCDN

End-users

Collateral blocking
- Attacker sends requests to ingress IPs
- Global end-users are collaterally blocked

1 egress IP

' 2.90s IP blocki
90s ocking t\\\
' 4.Collateral blockingy o SSSNLAN
s “X =
NY
GFW Origin

Egress IP Blocking Evaluation

+ MaxCDN: block one egress IP for 12 hours

, 3 origin locations: egress IP churning is not a
-~ MaxCDN_Beijing MaxCDN_Singpore f . foricin |)
- MaxCDN_SiliconValley unction ot origin location

Slow egress [P churning makes the
backend attack much easier !

100

e}
[«

(=)
(<]

Percentage

&
(<)

Successful accessing ratio drops below 90%,

only < 10% global clients are not affected.

N
()

33

Summary

Mitigation

Attack-1 " [imit the backend network traffic.

Attack-2 enforce strict forwarding (store-then-forward).

Attack-3 apply unpredictable egress IP churning strategy.

35

Responsible Disclosure

Fastly: Confirmed HTT/2 and pre-POST threats, suggest to implement a request
forwarding timeout, and offered us T-shirts.

Cloudflare: reproduced HTTP/2 amplification with 126x, and rewarded us $200
bonus.

CloudFront: HTTP/2 issue 1s the product of HT'TP/2 standard, suggest to use
rate-based WAF rules to mitigate the attack.

MaxCDN: HTTP/2 is already known.They think the egress IP blocking 1s out of
scope as 1t involves with additional GFW infrastructure.

CDNSun and KeyCDN: thanked for the messages and forwarded the issues to the
developers, although no further response.

36

Summary

» CDN faces more security challenges in the increasing
complicated Internet.

» Protocol or implementation weaknesses of CDN can be

abused to break DDoS protection.

» Finding the balance between usability and security.

37

Thank you!

Percentage

Egress IP Blocking Evaluation

+ Block backend connection(s) for 12 hours

> MaxCDN: block one egress IP
> Other CDNSs: block 16 egress IPs

&= Cloudflare S8 GlouddFiont Slow egress IP churning makes the
-8~ Fastly ~6- MaxCDN_Beijing backend attack much easier!
—=— MaxCDN_Singpore —=— MaxCDN_SiliconValley P 3

e > 80% global clients are not affected

4)

~
(MaXCDN: Only < 10% global clients are not
affected. (Origin located in

Beijing/Singapore/Silicon Valle
 Beying/Singap y))

N
0 2 - 6 8 10 12 :35)

#&i10 B, Goals of CDN Vendors

» Under fierce business competition

» Strive to provide efficient & full-featured service

Negligence [sacrifice of security?

40

Experimental Blocking Evaluation

—&— Cloudflare -8~ CloudFront
-8~ Fastly —©— MaxCDN_Beijing
MaxCDN_Singpore —=— MaxCDN_SiliconValley

Percentage

6
Hours

Experimental blocking

=> From hour 0, send requests to global
ingress IPs, simulating a global accessing

=> From hour 1, block one egress IP of
MaxCDN, block 16 egress IPs of other
CDNs

=> Successful global accessing ratio drops
> MaxCDN, blew 10% within 12 hours
> Other CDN:ss fluctuate because of

faster egress IP churning rate

A low egress IP churning rate make the backend attacks more easier
> access blocking, e.g., on-path blocking or off-path “CrossFire” attack

> traffic eavesdropping
>

41

Qi:
How to globally measure the hidden DNS
Interception?

Q2:
What are the characteristics of the hidden
DNS interception?

Collect vantage points

Diversify DNS requests

Identify egress IP

Amplification factors

» To achieve the maximum amplification factors

> Streams
m Use maximum streams (100, RFC-recommended value)

> HPACK

m Use a “:path” header field predefined in the static table, or a shorter one.

/A

m Use “cookie”, “user-agent” or other repeated fields.

> Huffman encoding

m Usecharactersin{0,1,2,a,c,¢6,i,o0,s,t}which have the shortest Huffman
encoding defined in the RFC7541.

44

HTTP/2 amplification factors

» The amplification factors are affected by the Huffman
encoding and the :path header field.

» To achieve the maximum amplification factors:

> Use charactersin{o, 1,2,a,¢c€,i, 0,s, t}which have the shortest
Huffman encoding defined in the RFC7541.

> Use a “:path” header field predefined in the static table, or a shorter
one.

Applicable to all vendors we tested.

45

Experimental evaluation

Experimental blocking

=> From hour 0, send requests to global

ingress IPs, simulating a global accessing

=> From hour 1, block one egress IP of

MaxCDN, block 16 egress IPs of other

CDNs

-5~ Cloudflare -8~ CloudFront
-8~ Fastly -5— MaxCDN_Beijing
MaxCDN_Singpore —-— MaxCDN_SiliconValley

100

(o2}
(=]

(=)}
(=}

'
(<]

Percentage

=> Successful global accessing ratio drops
> MaxCDN, blew 10% within 12 hours

>

Backend blocking:

(CDN s alm to access N
and cache web
resources efficiently

\with few nodes)

for 12 hou
—>

N
(<]

-

Fewer egress IP

kI‘GSOUI'CQS

J

p
A much lower egress
klP—chuming rate

~

6
Hours

:>[Degrade global availability }

46

HTTP/2 Protocol

+ RFC7540, released 1n 2015
HTTP1.1

A. Binary framing message e Plain text
Inconsistent interpretation

B. Multiplexing streams == header-of-line blocking
Concurrent multiplex streams

C. HPACK header compression —) repeated redundant header
fields in each request and reply

47

Ingress IP & Egress IP

« A normal request is routed to a nearby CDN ingress IP.
» CDN connects the server with a egress IP

E GET /index.php 4 A
Host: www.demo.com . »
=N F

_ Ingress Egressj www.demo.com
CDN

48

DoS to DDoS

« Global nodes can be accessed directly from one vantage

pomt HTTP/2 bandwidth amplification attack
Pre-POST slow HTTP attack

® 0

Attacke www.demo.com

r \gress Egresy

Global CDN distribution has not been measured in large scale.

49

Global distribution of Ingress IP

« Collectingress IP addresses
> Internet-wide HTTP scanning (or censys.io)

GET /index.php

E Host: a.b.c.d .
Client 403 forbidden

Server: CloudFront G|obal ingreSS IPs

_ HTTP Status Code HTTP Response(H: Header B: Body)

CloudFront 403 H: “Server: CloudFront”
Cloudflare 403 H: “Server: cloudflare”
Fastly 500 B: “Fastly error”

50

http://censys.io

CDN Threat Model

Bypass CDN protection
[CloudPiercer, CCS '15]
,: [Residual Resolution, DSN 18]

HTTPS /;@ HTTP Front-end security
>\ e % ,: [HTTPS meet CDN, IEEE S&P *14)
—h—

GET /HTTP/1.1 [TLS private key sharing, CCS '16]
Host: a.com

Host: b.com Cache Poison

v & X-oversized-header « @ x 1 ,: [Host of trouble, CCS '16)
4

H

L\ =1 [Cache fallen, CCS '19)
[Cached and Confused, USENIX security '20]
Attack Origin
él > =] ; [Protection or Threat, ESORICS '09]
-]
L\ —= } Attack CDN

% [Forwarding loop attack, NDSS '16)

[Send legal crafted requests to abuse the CDN to attack the origin ? }

51

CDN Forwarding Process

Decoupled frontend and backend connections

Frontend connection Backend connection

Q Request @ Forwarded request 1
—
= ¥

Response Replied response
End-user CDN Website Server

Improve with Huffman Encoding

code
code as bits as hex len
sym aligned to MSB aligned in
to LSB bits
‘a' (97) |00011 3 [51
'b' (98) |100011 23 [6]
'c' (1 99) |00100 4 [5]
‘d'" (100) |100100 24 [6]
‘e’ (101) |00101 5 I 5]
"' (102) |[100181 25 [6]
'g' (103) |100110 26 [6]
'h' (104) |100111 27 [6]

characters{0, 1, 2, a,c, e,1i, 0, s, t } have the shortest Huffman encoding

é Amplification ratio: 140 -> 166
CLOUDFLARE

Huffman(“demo.com”)

1000 0010

1000 0100

0100 0001 + Ixxx xxxx + 100100 00101 101001 00111 010111 00100 00111 101001
-->1000 0110 + 1001 0000 1011 0100 1001 1101 0111 0010 0001 1110 1001 1111

1000 0111

82 844186 90 b4 9d 72 1e 9f 87

54

HPACK: Header Compression for HTTP/2

HTTP/2 HPACK static table
LTIREE, 3 TS5 ER%E

Static table
1 :authority
Request header 2 ‘method GET HPACK-encoded header
:method GET 3 :method POST
:path / 4 :path / 2
:authority demo.com h . 4
cookie e 61 www-authenticate 62
custom-hdr random-strl |:> 02 -authority demo.com |:> 63
63 cookie some-value 70 Huffman(“random-str2”)
70 custom-hdr random-str2

Dynamic table 95

Amplification factors

» To achieve the maximum amplification factors

Affecting features

A. HPACK

B. Multiplexing streams

C. Huffman encoding

)

)

>

Use the repeated head fields with
large-sized values, “cookies”,
“user-agent”

Use maximum streams

Use characters which have the
shortest Huffman encoding

56

HTTP/2-1.1 Amplification Attack

one stream

&

i\

GET /
:authority:demo.com
Cookie: a=abc...xyz

One stream

Attacker one HTTP/2 connection

=

=3
(=]
=l

CDN

[Decompress anm

GET /urll

host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

One HTTP/1.1 request

GET /url2

host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

Q.
 §

www.demo.com

57

two or more streams

GET /
:authority:demo.com
Cookie: a=abc...xyz

Two streams

Attacker one HTTP/2 connection

[Decompress anm

=

=3
(=]
=l

CDN

GET /urll

host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

GET /url2

host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

HTTP/2-1.1 Amplification Attack

Two HTTP/1.1 requests 1 ¥

www.demo.com

58

Multiplexing Streams

» HTTP/1.1 performance inefficiency

> Head-of-line blocking

» A TCP connection can send multiple HTTP requests and
responses in parallel and staggered

=N R [Streame |

= s (SRR [S| s

Stream?2

Client

one HTTP/2 connection

HTTP/2 Server

59

Attack-1.2: Using HPACK Dynamic Table

Request1

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: X..X(2000)
cookie2: X..X(1968)

» Encoded Data

82 84 ... fc (3999)

Huffman(“X...X”)
Huffman(“X...X”)

Request 2

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: X..X(2000)
cookie2: X..X(1968)

» Encoded Data

82 84 cO0 87 bf be

Static Table 2
4
61 www-authenticate 1 Huffman(“demo.com”)
7
Dynamlc Table Huffman(“cookiel”)
Huftman(*“cookie2”)
Static Table
2
, 4
61 www-authenticate
62 :authority demo.com =
63 cookiel X...X (2000) 7
64 cookie? X...X (1968) 63

Dynamic Table

60

Impact From “:path” Header Field

[indexed as “4” in HTTP/2 table }

P

:path: / :path: /other urls
:authority:demo.com :authority:demo.com
other field: ... other field: ...

_ CloudFront Cloudflare CDNSun KeyCDN MaxCDN

Max streams

Amplification ratio
(:path /)

Amplification ratio
(:path /8bytes_random)

116.9 166.1 118.7 97.9 105.5 94.7

99.6 132.6 99.5 89.0 96.8 82.3

61

Slow HTTP Attack

Exhaust the HTTP connection resources }

Uncomplete HTTP requests Q
—
a ¥ - o

Attacker >

HTTP Server

HTTP is designed to keep connection open until the receiving of data is finished.

62

CDN mitigates slow HTTP attacks

» A CDN stops

> slow header attack (receive the full header then forward)
> slow read attack (no slow attribute in backend connection)
> slow POST attack ?

- _d

é @ - > 1,:
A\ -

Attacker ” CDN HTTP Server

63

Pre-POST Forwarding Attack

slow post B [&E

Uncomplete POST requests
& @
A\ o
Attacker ” CDN

<§‘
- 1#

HTTP Server

HTTP/2-1.1 Amplification on CDN

+ Our study
> lIdentity that HTTP/2-1.1 conversion of CDN will cause amplification attack.
> Improve the attack with the feature of Hutfman encoding.

> Real-world measurement and evaluation.

. -» one TCP connection
Protocol conversion

HTTP/2 - HTTP/1.1 B one http request
a () T 1
‘:. SN N E — ,:
Attacker CcoN — Origin

65

