
CDN Judo : Breaking the CDN DoS
Protection with Itself

Run Guo, Weizhong Li, Baojun Liu, Shuang Hao,
Jia Zhang, Haixin Duan, Kaiwen Shen, Jianjun Chen, Ying Liu

❖ Infrastructure for access acceleration and DDoS defence
➢ 14.85% of top 1M, 38.98% of top 10K websites [Your Remnant Tells Secret, DSN ’18]

➢ We find CDN itself can be abuse to break its DDoS protection

Content Delivery Network

2

OriginCDN

CDN Forwarding Process

3

Ingress Egress

CDN

Origin

GET /index.php
Host: demo.com

end-to-end connection frontend and backend connections

frontend backend

Previous Works

4

Our work: abuse CDN-forwarded requests to attack the origin.

CDN Internal security
[Forwarding loop attack, NDSS ’16]Front-end connection security

[HTTPS meet CDN, IEEE S&P ’14]
[TLS private key sharing, CCS ’16]
[Host of trouble, CCS ’16]
[Cache fallen, CCS ’19]
[End user maneuvered, USENIX security ’18]
[Cached and Confused, USENIX security ’20]

Backend connection security
[Protection or Threat, ESORICS ’09]

Origin IP Expose
[CloudPiercer, CCS ’15]
[Residual Resolution, DSN ’18]

Our Work
❖ Exploiting request-forwarding flaws

❖ Performed realworld evaluations on six vendors

5

Attack-1 HTTP/2 bandwidth amplification attack

Attack-2 Pre-POST slow HTTP attack

Attack-3 Egress IP blocking attack

Request-forwarding Features Could be Abused

6

CDN

Forwarded Request

Client

Request

Origin

Attack-1 Protocol converting: HTTP/2 -> HTTP/1.1 Maximum compatibility

Pre-POST forwarding: speed up request-forwarding Access Acceleration

Origin shield: reduce backend connections Traffic offloadingAttack-3

Attack-2

Attack-1

HTTP/2 Bandwidth Amplification Attack

HTTP/2 Protocol

8

❖ RFC7540, released in 2015
➢ Binary message framing
➢ Streams and multiplexing

Multiple HTTP requests and responses can be transferred in the same TCP
connection in parallel and staggered.

➢ HPACK: header compression
Avoid repeatedly transferring headers that do not change frequently.

❏ Deployment: Over 43.2% of Alexa top 1M websites (w3techs.com, 12 Feb 2020)

HTTP/2-1.1 Amplification on CDN

9

OriginAttacker

Protocol conversion

CDN

HTTP/1.1HTTP/2 one http request

❖ Our study
➢ Identify that HTTP/2-1.1 conversion of CDN will cause amplification attack.
➢ Improve the attack with the feature of Huffman encoding.
➢ Real-world measurement and evaluation.

❏ [HTTP/2 Tsunami Attack, EST ’17]
Show an amplification attack in HTTP/2-1.1 proxies built with Nginx and Nghttp2.

CDN Vendors Claim to Support HTTP/2
❖ HTTP/2 is supported by most major CDNs
❖ The backend connection still uses HTTP/1.1

10

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Frontend
Connection

Default on
Configurable Default on Default on Default off

Configurable Default on Default on
Configurable

Backend
Connection Still use HTTP/1.1

❖ Referencing an indexed static table of common header fields to
encode request headers.

Attack-1.1: Using HPACK Static Table

11

1 :authority
2 :method GET
3 :method POST
4 :path /
...
7 :scheme https
...
61 www-authenticate

2
4
1
7

H(“demo.com”)

Static Table
Raw Request Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https

82 84 41 86 90 b4 9d 72
1e 9f 87

54 Bytes

11 Bytes

Attack-1.1: Using HPACK Static Table

12

Attacker Origin

82 84 41 86 90 b4 9d 72
1e 9f 87

GET / HTTP/1.1
host: demo.com
scheme: https

CDN

Bandwidth amplification factor: 49B / 11B = 4.45

HTTP/2 HTTP/1.1

❖ HTTP/2-1.1 conversion of CDN causes a bandwidth amplification.

11 Bytes 49 Bytes

Attack-1.2: Using HPACK Dynamic Table

13

❖ Use an indexed dynamic table of previously seen headers to avoid
repeatedly transferring headers in the table.
➢ The firstly seen headers will be inserted into the dynamic table.

Request 1 Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000B)
cookie2: X..X(1968B)

2
4
1
7

Static Table

Dynamic Table

H(“X...X”)

H(“demo.com”)

H(“cookie1”)

H(“X...X”)H(“cookie2”)

82 84 ... fc (3999B)
...
61 www-authenticate

4042 Bytes

3999 Bytes

Attack-1.2: Using HPACK Dynamic Table

14

❖ Use an indexed dynamic table of previously seen headers to avoid
repeatedly transferring headers in the table.
➢ The subsequently repeated headers will be substituted as an index.

Request 2 Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000B)
cookie2: X..X(1968B)

...
61 www-authenticate
62 :authority demo.com
63 cookie1 X...X (2000B)
64 cookie2 X...X (1968B)

2
4
62
7
63

Static Table

Dynamic Table

82 84 c0 87 bf be

4042 Bytes

6 Bytes

Attack-1.2: Using HPACK Dynamic Table

15

Attacker Origin

82 84 ... fc (3999B) GET / HTTP/1.1
host: demo.com
scheme: https
cookie1: X...X (2000B)
cookie2: X...X (1968B)

CDN

Bandwidth amplification factor: 4039B × (N+1) / 3999B + 6B × N =

82 84 c0 87 bf be × N

× (N+1)

4039 + 4039N
3999 + 6N

For example, when N is 100, the factor is 88.70.

HTTP/2 HTTP/1.1

❖ The dynamic table enhances this kind of bandwidth amplification.

6 Bytes

3999 Bytes 4039 Bytes
× 1

Attack-1.3: Improve with Huffman Encoding

16

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000B)
cookie2: X..X(1968B)

82 84 ... fc (3999B)

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: a..a(2000B)
cookie2: a..a(1968B)

82 84 ... 63 (2511B)

❖ The shorter the Huffman encoding, the shorter the encoded data.
➢ The Huffman encoding of ‘X’ is 8 bits in length.
➢ Characters {0, 1, 2, a, c, e, i, o, s, t} have the shortest Huffman encoding (5 bits).

Request 1

Encoded Data

Attack-1.3: Improve with Huffman Encoding

17

❖ The shorter the Huffman encoding, the larger the amplification factor.

Huffman Encoding
Length Amplification Factor

Character ‘X’ 8 bits 88.70
when N is 100

Character ‘a’ 5 bits 131.13
when N is 100

Note: N is the concurrent requests in the same HTTP/2 connection.

4039 + 4039N
3999 + 6N

4039 + 4039N
2511 + 6N

Amplification Evaluation

18

❖ Create multiple concurrent requests in one HTTP/2 connection.
➢ The amplification factor grows with the number of concurrent requests.
➢ The max factor is got at the position of the max concurrent streams.

Max concurrent stream

Further improvement

19

Max Streams 100 128 256

Our Attack

Evaluation
Platform MaxCDN Fastly CDNsun CloudFront KeyCDN Cloudflare

Amplification
Factor 94.7 97.9 118.7 116.9 105.5 166.1

HTTP/2 Tsunami
Attack

Evaluation
Platform HTTP/2 Proxies built with Nginx and Nghttp2

Amplification
Factor 79.2 94.4 140.6

❖ Our work achieved larger amplification factors than previous work.

Attack-2

Pre-POST Slow HTTP Attack

CDN POST-Forwarding strategy

21

❖ Two POST-forwarding strategies
➢ Full-Forwarding: receive both header and the full message body, then forward
➢ Pre-Forwarding: receive the header, then forward

CDNClient Origin
frontend backend

← Full-Forwarding

← Pre-Forwarding

request header
message body

❖ Pre-Forwarding strategy can be abused to perform DDoS attack
➢ Frontend connections: send POST messages slowly.
➢ Backend connections: maintain for a long time.
➢ However, the attacker has to consume TCP connections as much as the origin.

HTTP/1.1 Pre-POST Forwarding Attack

22

Attacker OriginCDN

Send POST msg slowly

HTTP/1.1 HTTP/1.1

Connection resources exhausted

HTTP/2 Enhances the Attack

23

OriginAttacker CDN

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Max concurrent streams
per HTTP/2 connection 128 256 128 100 128 100

❖ CDN converts concurrent streams in one HTTP/2 connection to
multiple HTTP/1.1 connections when forwarding.
➢ The attacker consumes TCP connections much less than the origin.

HTTP/2

HTTP/1.1

Pre-POST Forwarding Attack

24

OriginAttacker CDN

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Max concurrent streams
per HTTP/2 connection 128 256 128 100 128 100

❖ Pre-Forwarding strategy can be abused to perform DDoS attack
❖ concurrent streams in one HTTP/2 connection → multiple HTTP/1.1 connections

HTTP/2

HTTP/1.1

Send POST msg slowly Connection resources exhausted

Real-world POST-forwarding Behaviors
❖ Some CDNs adopts Pre-Forwarding strategy to process POST request.

➢ Step 1: send POST message slowly in 300 seconds.
➢ Step 2: observe how long the backend connection maintains.
➢ Conclusion: The attacker can control the survival time of backend connections.
➢ Similar results were obtained using HTTP/1.1 or HTTP/2.

25

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Request Receiving
Time in Origin 0.87s 300.29s 299.92s 0.55s 299.79s 0.74s

Connection Keep-alive
Time in Origin 298.89s 0.12s 0.34s 299.32s 0.37s 15.01s

Vulnerable - - Vulnerable - Vulnerable

Proof of Concept

26

❖ Origin: max connections = 1000
❖ Attacker: send msg slowly for 300s
❖ Norml User: access website every 5s
❖ Result - the Origin is deny of service

➢ CloudFront, HTTP 504 gateway timeout
➢ Fastly, HTTP 503 service unavailable
➢ MaxCDN, A QoS attack

504

503

Attack-3

Egress IP Blocking Attack

Origin Shield

28

Without Origin Shield With Origin Shield
- offload the origin
- speed up cache-miss responses

❏ https://docs.fastly.com/en/guides/shielding

backend connections
originated from less
egress IPs.

Threat Model
❖ Global clients will be affected when just blocking one (or a small

set) egress IP(s) ?

29

Origin
Global Clients Ingress Egress

CDN

access blocking

Measurement of CDN Egress IP
❖ Simulate global clients
➢ hourly send requests to all ingress IP addresses

❖ Monitor egress IP churning at our own origin

30
Simulate accessing
from global clients.

❖ A small set of egress IPs

❖ Churning of egress IPs (24 hours measurement)
➢ MaxCDN: 96.32% of the backend connections originated from the same egress IP.
➢ Other CDNs churn egress IPs more fast, < 10% of the backend connections originated

form the same egress IP.

Characteristics of Egress IP distribution

31

Mapping Ingress IPs Egress IPs

CloudFront DNS 128906 862

Cloudflare Anycasting 490309 242

Fastly DNS 64659 1136

MaxCDN Anycasting 300 12

CDNSun DNS 116 40

KeyCDN DNS 95 39

❏ Results are consistent with [Unveil the hidden presence, ICNP ’19]

4.Collateral blocking

MaXCDN

Real-world Case Study

32

Global ingress IPs

Origin

End-users

1 egress IP

1. GET /BannedWord

3.GET /index.php

GFW

CDN
- Churning of egress IP is slow

Backend connection
- GFW locates between CDN and origin
- GFW blocks censored IP pairs for 90s

Collateral blocking
- Attacker sends requests to ingress IPs
- Global end-users are collaterally blocked

2.90s IP blocking

Egress IP Blocking Evaluation

33

❖ MaxCDN: block one egress IP for 12 hours

Successful accessing ratio drops below 90%,
only < 10% global clients are not affected.

Slow egress IP churning makes the
backend attack much easier !

3 origin locations: egress IP churning is not a
function of origin location

Summary

Mitigation

35

Threat Recommendation

Attack-1 limit the backend network traffic.

Attack-2 enforce strict forwarding (store-then-forward).

Attack-3 apply unpredictable egress IP churning strategy.

Responsible Disclosure

❖ Fastly： Confirmed HTT/2 and pre-POST threats, suggest to implement a request
forwarding timeout, and offered us T-shirts.

❖ Cloudflare: reproduced HTTP/2 amplification with 126x, and rewarded us $200
bonus.

❖ CloudFront: HTTP/2 issue is the product of HTTP/2 standard, suggest to use
rate-based WAF rules to mitigate the attack.

❖ MaxCDN: HTTP/2 is already known.They think the egress IP blocking is out of
scope as it involves with additional GFW infrastructure.

❖ CDNSun and KeyCDN: thanked for the messages and forwarded the issues to the
developers, although no further response.

36

Summary
❖ CDN faces more security challenges in the increasing

complicated Internet.
❖ Protocol or implementation weaknesses of CDN can be

abused to break DDoS protection.
❖ Finding the balance between usability and security.

37

Thank you!

38

Egress IP Blocking Evaluation

39

❖ Block backend connection(s) for 12 hours
➢ MaxCDN: block one egress IP
➢ Other CDNs: block 16 egress IPs

MaxCDN: Only < 10% global clients are not
affected. (Origin located in
Beijing/Singapore/Silicon Valley)

> 80% global clients are not affected

< 60% global clients are not affected

Slow egress IP churning makes the
backend attack much easier !

结论 里说，Goals of CDN Vendors
❖ Under fierce business competition

❖ Strive to provide efficient & full-featured service

40

Negligence / sacrifice of security?

Experimental Blocking Evaluation

41

Experimental blocking
➔ From hour 0, send requests to global

ingress IPs, simulating a global accessing
➔ From hour 1, block one egress IP of

MaxCDN, block 16 egress IPs of other
CDNs

➔ Successful global accessing ratio drops
➢ MaxCDN, blew 10% within 12 hours
➢ Other CDNs fluctuate because of

faster egress IP churning rate

A low egress IP churning rate make the backend attacks more easier
➢ access blocking, e.g., on-path blocking or off-path “CrossFire” attack
➢ traffic eavesdropping
➢ ...

Q1:
How to globally measure the hidden DNS
interception?

Q2:
What are the characteristics of the hidden
DNS interception?

Collect vantage points

Diversify DNS requests

Identify egress IP

Amplification factors

44

❖ To achieve the maximum amplification factors
➢ Streams

■
➢ HPACK

■
■

➢ Huffman encoding
■

HTTP/2 amplification factors

45

❖ The amplification factors are affected by the Huffman
encoding and the :path header field.

❖ To achieve the maximum amplification factors:
➢ Use characters in { 0, 1, 2, a, c, e, i, o, s, t } which have the shortest

Huffman encoding defined in the RFC7541.
➢ Use a “:path” header field predefined in the static table, or a shorter

one.
Applicable to all vendors we tested.

Experimental evaluation

46

Backend blocking:
blocking or IPs for hoursCDNs aim to access
and cache web
resources efficiently
with few nodes

Fewer egress IP
resources

A much lower egress
IP-churning rate

Degrade global availability

➔

➔

➔
➢
➢

HTTP/2 Protocol
❖ RFC7540, released in 2015

47

A. Binary framing message

B. Multiplexing streams

C. HPACK header compression

plain text
inconsistent interpretation

header-of-line blocking
Concurrent multiplex streams

repeated redundant header
fields in each request and reply

HTTP1.1

❖ A normal request is routed to a nearby CDN ingress IP.
❖ CDN connects the server with a egress IP

Ingress IP & Egress IP

48

❖ Global nodes can be accessed directly from one vantage
point

DoS to DDoS

49

Global distribution of Ingress IP
❖ Collect ingress IP addresses
➢ Internet-wide HTTP scanning (or censys.io)

50

http://censys.io

CDN Threat Model

51

Bypass CDN protection
[CloudPiercer, CCS ’15]
[Residual Resolution, DSN ’18]

Front-end security
[HTTPS meet CDN, IEEE S&P ’14]
[TLS private key sharing, CCS ’16]

Cache Poison
[Host of trouble, CCS ’16]
[Cache fallen, CCS ’19]
[Cached and Confused, USENIX security ’20]

Attack Origin
[Protection or Threat, ESORICS ’09]
Attack CDN
[Forwarding loop attack, NDSS ’16]

Send legal crafted requests to abuse the CDN to attack the origin ?

CDN Forwarding Process

52

Decoupled frontend and backend connections

Improve with Huffman Encoding

53

54

Huffman(“ ”)

1000 0010
1000 0100
0100 0001 + 1xxx xxxx + 100100 00101 101001 00111 010111 00100 00111 101001
 --> 1000 0110 + 1001 0000 1011 0100 1001 1101 0111 0010 0001 1110 1001 1111
1000 0111

82 84 41 86 90 b4 9d 72 1e 9f 87

HPACK: Header Compression for HTTP

55

HTTP/2 HPACK static table
半页表原理，半页举例压缩效果

Huffman(“ ”)

Request header

Static table

Dynamic table

HPACK-encoded header

Amplification factors
❖ To achieve the maximum amplification factors

56

A. HPACK

Affecting features

B. Multiplexing streams

C. Huffman encoding

Use the repeated head fields with
large-sized values, “cookies”,
“user-agent”

Use maximum streams

Use characters which have the
shortest Huffman encoding

HTTP/ Amplification Attack

57

GET /
:authority:demo.com
Cookie: a=abc...xyz

GET /url1
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

GET /url2
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

HTTP/ Amplification Attack

58

GET /
:authority:demo.com
Cookie: a=abc...xyz

2
4
62
63

GET /url1
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

GET /url2
host: www.demo.com
Cookie: a=abc...xyz
Cookie: b=xyz...abc

❖ HTTP/1.1 performance inefficiency
➢ Head-of-line blocking

❖ A TCP connection can send multiple HTTP requests and
responses in parallel and staggered

Stream1 Stream3 Stream1Stream3

Stream4 Stream2

Multiplexing Streams

59

Attack-1.2: Using HPACK Dynamic Table

60

Request 1 Encoded Data

:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000)
cookie2: X..X(1968)

82 84 ... fc (3999)
...

61 www-authenticate

2

4

1

7

Static Table

Dynamic Table Huffman(“X...X”)

Request 2 Encoded Data

...

61 www-authenticate

62 :authority demo.com

63 cookie1 X...X (2000)

64 cookie2 X...X (1968)

2

4

62

7

63

Static Table

Dynamic Table

Huffman(“demo.com”)

82 84 c0 87 bf be
:method: GET
:path: /
:authority: demo.com
:scheme: https
cookie1: X..X(2000)
cookie2: X..X(1968)

Huffman(“cookie1”)

Huffman(“X...X”)Huffman(“cookie2”)

Impact From “:path” Header Field

61

:path: /
:authority:demo.com
other_field: ...

:path: /other_urls
:authority:demo.com
other_field: ...

indexed as “4” in HTTP/2 table

HTTP is designed to keep connection open until the receiving of data is finished.

Slow HTTP Attack

62

Exhaust the HTTP connection resources

❖ A CDN stops
➢ slow header attack (receive the full header then forward)
➢ slow read attack (no slow attribute in backend connection)
➢ slow POST attack ?

CDN mitigates slow HTTP attacks

63

slow post 攻击图

Pre-POST Forwarding Attack

64

HTTP/2-1.1 Amplification on CDN

65

OriginAttacker

Protocol conversion

CDN

HTTP/1.1HTTP/2 one http request

❖ Our study
➢ Identify that HTTP/2-1.1 conversion of CDN will cause amplification attack.
➢ Improve the attack with the feature of Huffman encoding.
➢ Real-world measurement and evaluation.

one TCP connection

